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ckt iff every vertex has even 
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Eulerian ckt ⇒ even degree: easy

Even degree ⇒ Eulerian ckt: via algorithms
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Let’s look at the sequence again:
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Each 4-sequence of Bs and Rs appears exactly once in this sequence 
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When I asked all Red card holders to raise their hand, I got a sequence

R     R B     B

gives 4♥, 2♥ , 1♠, 4♣
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De Bruijn Sequences

Definition: A 𝑘-window de Bruijn sequence is a binary sequence of 
length 2𝑘 , where every length 𝑘 binary sequence 
appears exactly once.

𝑘 = 2: 0  0  1  1

𝑘 = 3: 0  0  0  1  0  1  1  1

𝑘 = 4: B     B B B R B     B R     R B     R B     R     R R R

0   0    0   0   1    0   0    1   1   0    1   0    1   1   1   1

But do such sequences always exist? How do we find them?
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8 edges

Each 3-sequence of 1s and 0s 
appears exactly once

Each vtx has 
in-degree = out-degree = 2

Eulerian walk on this graph gives us 
a 3-window de Bruijn sequence. 
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𝑘 = 3: 0  0  0  1  0  1  1  1
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To generate a 𝑘-window de Bruijn
sequence: 

- draw graph with 2𝑘−1 nodes, 
each node with length 𝑘 − 1
binary string

- add edges (2 incoming and 
outgoing for each node), each 
edge gives length 𝑘 string

- find an Eulerian walk
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- robotics, for robots to decide where they are
- encoding and decoding
- genome reconstruction
- ...
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Thanks for listening!


