Algorithms on Graphs

Umang Bhaskar & Juhi Chaudhary

Day 2, session 1: Walks in graphs
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Basic Algorithms

4. find a walk that uses each edge exactly once

Eulerian walk: sequence of adjacent edges,
such that each edge appears exactly once.
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4. find a circuit that uses each edge exactly once

Eulerian circuit: sequence of adjacent edges,

such that each edge appears exactly once,
and begins and ends at the same vtx.
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4. find a circuit that uses each edge exactly once

Eulerian circuit: sequence of adjacent edges,
such that each edge appears exactly once,
and begins and ends at the same vtx.

Theorem: Graph G = (V,E) has an Eulerian
ckt iff every vertex has even
degree

Eulerian ckt = even degree: easy

Even degree = Eulerian ckt: via algorithms
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Hierholzer's Algorithm:
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until back to e
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4. find a circuit that uses each edge exactly once

Eulerian circuit: sequence of adjacent edges,
such that each edge appears exactly once,
and begins and ends at the same vtx.

Theorem: Graph G = (V,E) has an Eulerian
ckt iff every vertex has even
degree
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The Card Trick

16 cards were in a fixed sequence:

180,40, 30,280, 39,58,38,99,20,18,79,74,190,59,49,29
One (or more) straight cut only permutes the cards cyclically:
39,59,3,99,290,14,79,78,10,590,49,290,18,:8,348 .24

A sequence of four cards is picked from the top:

39,59,38,990.20,18,79,786,10,59,49,290,186,18,386, 246

But how would | know which card is on top?
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(considered cyclically)!

(2% = 16 such sequences, & 16 cards, hence exactly 16 starting points)
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The Card Trick

Let's look at the sequence again:

1,480,380 2 39,58,38$,99,20,18%6,79,74,10,50,49,29
B B| B B R B B R R B R B R R |[R R

Each 4-sequence of Bs and Rs appears exactly onc this sequence

(considered cyclically)!

When | asked all Red card holders to raise their hand, | got a sequence

R R B B
gives (490,29 18,4
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De Bruijn Sequences

Definition: A k-window de Bruijn seqguence is a binary sequence of
length 2% , where every length k binary sequence
appears exactly once.

0011
00010111

B B B B RBBIRI RIBIRIBRRRR
o0 o001 00 110101111

x~ o A
|
NOwW N

But do such sequences always exist? How do we find them?
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De Bruijn Sequences and Eulerian Walks

k=3 00010111 00

Each vtx has
in-degree = out-degree = 2

8 edges

Each 3-sequence of 1s and Os
appears exactly once

Eulerian walk on this graph gives us

. . 111
a 3-window de Bruijn sequence.




De Bruijn Sequences and Eulerian Walks

k=3 00010111 00

To generate a k-window de Bruijn

seguence. 100

- draw graph with 2*71 nodes,
each node with length k — 1
binary string

- add edges (2 incoming and
outgoing for each node), each
edge gives length k string

- find an Eulerian walk 111
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de Bruijn sequences useful for many applications:

- robotics, for robots to decide where they are
- encoding and decoding

- genome reconstruction
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de Bruijn sequences useful for many applications:

- robotics, for robots to decide where they are
- encoding and decoding

- genome reconstruction

Thanks for listening!



